Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Scand J Immunol ; 99(5): e13362, 2024 May.
Article in English | MEDLINE | ID: mdl-38605563

ABSTRACT

T cells contribute to the pathogenesis of atherosclerosis. However, the presence and function of granulocyte-macrophage-colony-stimulating factor (GM-CSF)-producing T helper (ThGM) cells in atherosclerosis development is unknown. This study aims to characterize the phenotype and function of ThGM cells in experimental atherosclerosis. Atherosclerosis was induced by feeding apolipoprotein E knockout (ApoE-/-) mice with a high-fat diet. Aortic ThGM cells were detected and sorted by flow cytometry. The effect of oxidized low-density lipoprotein (oxLDL) on ThGM cells and the impact of ThGM cells on macrophages were evaluated by flow cytometry, quantitative RT-PCR, oxLDL binding/uptake assay, immunoblotting and foam cell formation assay. We found that GM-CSF+IFN-γ- ThGM cells existed in atherosclerotic aortas. Live ThGM cells were enriched in aortic CD4+CCR6-CCR8-CXCR3-CCR10+ T cells. Aortic ThGM cells triggered the expression of interleukin-1ß (IL-1ß), tumour necrosis factor (TNF), interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2) in macrophages. Besides, aortic ThGM cells expressed higher CD69 than other T cells and bound to oxLDL. oxLDL suppressed the cytokine expression in ThGM cells probably via inhibiting the signal transducer and activator of transcription 5 (STAT5) signalling. Furthermore, oxLDL alleviated the effect of ThGM cells on inducing macrophages to produce pro-inflammatory cytokines and generate foam cells. The nuclear receptor subfamily 4 group A (NR4A) members NR4A1 and NR4A2 were involved in the suppressive effect of oxLDL on ThGM cells. Collectively, oxLDL suppressed the supportive effect of ThGM cells on pro-atherosclerotic macrophages.


Subject(s)
Atherosclerosis , Granulocyte-Macrophage Colony-Stimulating Factor , Lipoproteins, LDL , Macrophages , T-Lymphocytes, Helper-Inducer , Animals , Mice , Atherosclerosis/genetics , Cytokines/metabolism , Foam Cells/pathology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Interleukin-6/metabolism , Lipoproteins, LDL/metabolism , Macrophages/metabolism , T-Lymphocytes, Helper-Inducer/metabolism
2.
Nanotechnology ; 33(34)2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35576893

ABSTRACT

Synthesis of NiHCCo precursors via simple co-precipitation and nickel-cobalt tetraselenide composites grown on nitrogen-doped reduced graphene oxide (NiCoSe4/N-rGO) were fabricated using solvothermal method. The introduction of N-rGO used as a template effectively prevented agglomeration of NiCoSe4nanoparticles and provided more active sites, which greatly increased the electrochemical and electrical conductivity for NiCoSe4/N-rGO. NiCoSe4/N-rGO-20 presents a remarkably elevated specific capacity of 120 mA h g-1under current density of 1 A g-1. NiCoSe4/N-rGO-20 demonstrates an excellent cycle life and achieves a remarkable 83% retention rate over 3000 cycles with 10 A g-1. NiCoSe4/N-rGO-20//N-rGO asymmetric supercapacitor was constructed based on the NiCoSe4/N-rGO-20 as an anode, N-rGO as cathode by using 2 mol l-1KOH as an electrolyte. NiCoSe4/N-rGO-20//N-rGO ASC demonstrates an ultra-big energy density of 14 Wh kg-1and good circulation stability in the power density of 902 W kg-1. It is doubled in comparison to the NiCoSe4/N-rGO-20//rGO asymmetric supercapacitor (7 Wh kg-1). The NiCoSe4/N-rGO-20//N-rGO ASC capacity retention is still up to 93% over 5000 cycles (5 A g-1). The results reveal that this device would be a prospective cathode material of supercapacitors in actual applications.

3.
Apoptosis ; 24(1-2): 157-167, 2019 02.
Article in English | MEDLINE | ID: mdl-30387007

ABSTRACT

Reports have showed that Sigma-1 receptor (Sig-1R) activation can protect neurons against cerebral ischemia/reperfusion (I/R) injury in mice and alleviate endoplasmic reticulum (ER) stress in cultured cells, but little known is about the protective role of Sig-1R on ER stress induced by cerebral I/R. The purpose of this study was to determine whether Sig-1R exerts a protective effect against ER stress-mediated apoptosis in cerebral I/R using a 15-min bilateral common carotid artery occlusion (BCCAO) mouse model. At 72 h after reperfusion in BCCAO mice, we found that Sig-1R knockout (Sig-1R KO) significantly increased terminal dUTP nick-end labeling (TUNEL)-positive cells and nuclear structural damage in cortical neurons. Treatment with the Sig-1R agonist PRE084 once daily for three consecutive days reduced the number of TUNEL-positive cells and improved the ultrastructural damage of neurons in the cerebral cortex. These protective effects could be blocked by the Sig-1R antagonist BD1047. Then, we used BCCAO mice at 24 h after reperfusion to detect the expression of ER stress-mediated apoptotic pathway proteins. We found that expression of the pro-apoptotic proteins p-PERK, p-eIF2α, ATF, CHOP, p-IRE, p-JNK, Bim, PUMA, cleaved-caspase-12 and cleaved-caspase-3 was significantly increased and that expression of the anti-apoptotic protein Bcl-2 was significantly decreased in Sig-1R KO-BCCAO mice compared with BCCAO mice. Meanwhile, we found that treatment with PRE084 twice a day decreased pro-apoptotic protein expression and increased anti-apoptotic protein expression. The effects of PRE084 were blocked by the Sig-1R antagonist BD1047. These results suggest that Sig-1R activation inhibits ER stress-mediated apoptosis in BCCAO mice, indicating that Sig-1R may be a therapeutic target for neuroprotection particularly relevant to ER stress-induced apoptosis after cerebral I/R injury.


Subject(s)
Apoptosis/genetics , Brain Ischemia , Endoplasmic Reticulum Stress/physiology , Neuroprotection/genetics , Receptors, sigma/physiology , Reperfusion Injury , Animals , Brain Ischemia/genetics , Brain Ischemia/metabolism , Brain Ischemia/pathology , Brain Ischemia/prevention & control , Cytoprotection/genetics , Endoplasmic Reticulum Stress/genetics , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/physiology , Protective Agents/metabolism , Receptors, sigma/genetics , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Reperfusion Injury/prevention & control , Sigma-1 Receptor
4.
Biochem J ; 444(3): 497-502, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22530691

ABSTRACT

Candida albicans RCH1 (regulator of Ca(2+) homoeostasis 1) encodes a protein of ten TM (transmembrane) domains, homologous with human SLC10A7 (solute carrier family 10 member 7), and Rch1p localizes in the plasma membrane. Deletion of RCH1 confers hypersensitivity to high concentrations of extracellular Ca(2+) and tolerance to azoles and Li(+), which phenocopies the deletion of CaPMC1 (C. albicans PMC1) encoding the vacuolar Ca(2+) pump. Additive to CaPMC1 mutation, lack of RCH1 alone shows an increase in Ca(2+) sensitivity, Ca(2+) uptake and cytosolic Ca(2+) level. The Ca(2+) hypersensitivity is abolished by cyclosporin A and magnesium. In addition, deletion of RCH1 elevates the expression of CaUTR2 (C. albicans UTR2), a downstream target of the Ca(2+)/calcineurin signalling. Mutational and functional analysis indicates that the Rch1p TM8 domain, but not the TM9 and TM10 domains, are required for its protein stability, cellular functions and subcellular localization. Therefore Rch1p is a novel regulator of cytosolic Ca(2+) homoeostasis, which expands the functional spectrum of the vertebrate SLC10 family.


Subject(s)
Calcium/metabolism , Candida albicans/physiology , Cell Membrane/physiology , Fungal Proteins/physiology , Homeostasis/physiology , Organic Anion Transporters, Sodium-Dependent/physiology , Symporters/physiology , Calcium/physiology , Candida albicans/genetics , Cell Membrane/genetics , Cytosol/metabolism , Cytosol/physiology , Fungal Proteins/genetics , Homeostasis/genetics , Humans , Multigene Family , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL
...